Improved training of excitation for HMM-based parametric speech synthesis
نویسندگان
چکیده
This paper presents an improved method of training for the unvoiced filter that comprises an excitation model, within the framework of parametric speech synthesis based on hidden Markov models. The conventional approach calculates the unvoiced filter response from the differential signal of the residual and voiced excitation estimate. The differential signal, however, includes the error generated by the voiced excitation estimates. Contaminated by the error, the unvoiced filter tends to be overestimated, which causes the synthetic speech to be noisy. In order for unvoiced filter training to obtain targets that are free from the contamination, the improved approach first separates the non-periodic component of residual signal from the periodic component. The unvoiced filter is then trained from the non-periodic component signals. Experimental results show that unvoiced filter responses trained with the new approach are clearly noiseless, in contrast to the responses trained with the conventional approach.
منابع مشابه
Deep neural network-based statistical parametric speech synthesis system using improved time-frequency trajectory excitation model
This paper proposes a deep neural network (DNN)-based statistical parametric speech synthesis system using an improved time-frequency trajectory excitation (ITFTE) model. The ITFTE model, which efficiently reduces the parametric redundancy of a TFTE model, improved the perceptual quality of the vocoding process and the estimation accuracy of the training process. However, there remain problems ...
متن کاملImprovements of Hungarian Hidden Markov Model-based Text-to-Speech Synthesis
Statistical parametric, especially Hidden Markov Model-based, text-tospeech (TTS) synthesis has received much attention recently. The quality of HMM-based speech synthesis approaches that of the state-of-the-art unit selection systems and possesses numerous favorable features, e.g. small runtime footprint, speaker interpolation, speaker adaptation. This paper presents the improvements of a Hung...
متن کاملTowards an improved modeling of the glottal source in statistical parametric speech synthesis
This paper proposes the use of the Liljencrants-Fant model (LFmodel) to represent the glottal source signal in HMM-based speech synthesis systems. These systems generally use a pulse train to model the periodicity of the excitation signal of voiced speech. However, this model produces a strong and uniform harmonic structure throughout the spectrum of the excitation which makes the synthetic spe...
متن کاملPerformance Analysis of Text To Speech Synthesis System Using HMM And Prosody Features With Parsing For Tamil Language
This paper describes a Hidden Markov Model (HMM) based (TTS) system and prosody based (TTS) system for producing natural sounding synthetic speech in Tamil language. The (HMM) based system consists of two phases such as training and synthesis. Tamil speech is first parameterized into spectral and excitation features using Glottal Inverse Filtering (GIF). An emotions present in the input text is...
متن کاملA comparison of speech synthesis systems based on GPR, HMM, and DNN with a small amount of training data
In this paper, we evaluate a framework of statistical parametric speech synthesis based on Gaussian process regression (GPR) and compare it with those based on hidden Markov model (HMM) and deep neural network (DNN). Recently, for the purpose of improving the performance of HMM-based speech synthesis, novel frameworks using deep architectures have been proposed and have shown their effectivenes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010